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1 Week 2 - Notes: Mathematical Preliminaries

We need a few things to get us started with making models of classical phenomenon. A few of
those topics might be familiar to you; things like vectors, and derivatives. But we’ll also need to
introduce some new concepts, like the concept of Discretization. In particular, we will introduce
a powerful method for solving all forms of Differential Equations – Euler-Cromer Integration. We
start by introducing the concept of Euler Discretization, and then we’ll move on to Euler-Cromer
Integration later in the course.

1.1 Euler Discretization

Another useful formulation of Classical Mechanics uses discrete points in time to make approximate
predictions of the motion. This is called the Euler Method. The Euler Method is a simple numerical
method to solve ordinary differential equations. The method is based on the idea of approximating
the derivative of a function by a finite difference.

We posit discrete time, like snapshots of the motion where a given measure of time ti exists in a
discrete set of times between t0 and tf . That is, ti ∈ {t0, t1, t2, . . . , tf}. We conceive of the motion
as discrete like the points in the figure below.

In this case, the points are equally spaced in time, such that ti+1 − ti = ∆t. This gives a simple
table of the motion of the object at each time step:

time position

t0 y0
t1 y1
t2 y2
. . . . . .

where yi is the position of the object at time ti. Here, ti = t0 + i∆t – equal time spacing – and
y(ti) = yi indicates the position of the object at time ti.

1.1.1 Predicting the Motion

This formulation can be used to predict the motion of the object. Let’s first define the average
velocity over a time step, ∆t, like this:

v(t) =
y(t+∆t)− y(t)

∆t
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Now, we know that at time, ti, the velocity is vi: v(ti) = vi If we make the time step small, ∆t → 0,
then the average velocity is approximately the velocity at time ti. Thus, we can write the velocity
at time ti as:

vi =
yi+1 − yi

∆t

Note If we take the limit that ∆t → 0, then the average velocity becomes the instantaneous velocity.
This stems from the Fundamental Theorem of Calculus.

lim
∆t→0

y(t+∆t)− y(t)

∆t
=

dy

dt
= ẏ

What about the acceleration? We can use the same idea to approximate the acceleration. The
average acceleration is given by:

a(t) =
v(t+∆t)− v(t)

∆t

And thus, the acceleration at time ti is:

ai =
vi+1 − vi

∆t

Again, if we take the limit that ∆t → 0, then the average acceleration becomes the instantaneous
acceleration:

lim
∆t→0

v(t+∆t)− v(t)

∆t
=

dv

dt
= v̇

1.1.2 Video Summary (13 minutes)

There’s many videos covering the topic of Euler’s method. Here’s a video that covers the basics
of Euler’s method and how it can be used to solve differential equations. It somewhat follows the
notes above, but it’s always good to hear another perspective.

• Direct Link: https://youtube.com/watch?v=_0mvWedqW7c

[2]: from IPython.display import YouTubeVideo

YouTubeVideo('_0mvWedqW7c', width=720, height=405)

[2]:
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1.2 Discretizing Newton’s Second Law

We can use the Euler Method to discretize Newton’s Second Law, and this allows us to predict the
motion of the object using iterative methods. These methods are well-suited for computers, and we
will learn how to implement them in this course.

Let there be a 1D net force acting the x-direction on an object of mass m, F (x). Here the force
changes with position. We can discretize this force as a function of position, F (xi). The net force
acting on the object is:

F (xi) = Fi

Using Newton’s Second Law, we can write the acceleration of the object as:

ai =
Fi

m

But the definition of the average acceleration gives:

ai =
vi+1 − vi

∆t
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Or in terms of the predicted velocity, vi+1:

vi+1 = vi + ai∆t

Or in terms of the net force:

vi+1 = vi +
Fi

m
∆t

This is the Euler formulation for predicting the velocity of the object in the next time
step – given the velocity at the current time step.

We pause here and will return to this formulation later, but this discretization is the basis for many
numerical methods in classical mechanics, and we can apply it to solve the falling object problem
above.

1.2.1 Looking Ahead

The development of the forward Euler scheme is the basis for many numerical methods in physics,
and especially in classical mechanics. The video below is a longer introduction to the Euler Method
and how it can be used to solve differential equations. It’s a bit more advanced than the previous
video, but it’s a good introduction to the topic. We will revisit this topic a number of times, and
you will have a chance to implement these methods in Python. This video will be posted again when
we cover numerical methods in more detail.

• Direct Link: https://www.youtube.com/watch?v=MstPeOTCVzQ

[3]: from IPython.display import YouTubeVideo

YouTubeVideo('MstPeOTCVzQ', width=720, height=405)

[3]:
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1.3 Additional Mathematical Preliminaries

As you have noticed, much of what we do in classical mechanics involves solving differential equa-
tions. We will explore how to solve these equations in this course. But also notice that most of
the work involves vector manipulation and/or decomposition. Thus, we will need to be comfortable
with vectors. Below are some mathematical concepts of vectors that we will use in this course.

1.3.1 Vectors and Coordinates

The figure below shows a vector in two dimensions.
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The vector is defined by its magnitude, A, and its direction, θ. The vector can be decomposed into
two components, Ax and Ay, in the x and y directions, respectively.

The magnitude of the vector is given by the Pythagorean theorem:

|A⃗| = A =
√
A2

x +A2
y

The angle of the vector is given by the tangent of the angle:

θ = tan−1

(
Ay

Ax

)
We can find the vector components using the magnitude and angle:

Ax = A cos(θ)

Ay = A sin(θ)

It’s important to note that the vector components are the projections of the vector onto the x and
y axes. The vector components are scalars, and the vector is a sum of the components. We can
write the vector in several common forms:

A⃗ = Axx̂+Ayŷ = Axî+Ay ĵ = Axêx +Ay êy.
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Unit Vectors The unit vectors, x̂, ŷ, î, ĵ, êx, and êy, are the basis vectors in the x and y
directions. The unit vectors are used to define the vector components.

Interestingly, the angle of the vector is not needed to write the vector in Plane Polar Coordinates
(r, θ). The vector can be written as:

A⃗ = AÂ

where Â is the unit vector in the direction of A⃗. Let’s check that works out:

A⃗ = Axx̂+Ayŷ

|A⃗| = A =
√
A2

x +A2
y

Â =
A⃗

|A⃗|
=

Axx̂+Ayŷ√
A2

x +A2
y

Such that,

A⃗ = AÂ = Axx̂+Ayŷ

Cartesian unit vectors are fixed in space and time when in an inertial reference frame. However,
the unit vectors in Plane Polar Coordinates are not fixed in space and time. They rotate with the
vector. This is a common source of confusion when working with vectors in different coordinate
systems, which we will come back to later.

The magnitude of a unit vector is always one, |Â| = 1. And unit vectors are orthogonal to each
other, x̂ · ŷ = 0.

1.3.2 Multiplication of Vectors

Dot (Scalar) Product A dot product of two vectors is a scalar quantity. The dot product of
two 3D vectors, a⃗ and b⃗, is given by:

a⃗ · b⃗ = axbx + ayby + azbz

This product is also equal to the product of the magnitudes of the vectors and the cosine of the
angle between them:

a⃗ · b⃗ = |⃗a||⃗b| cos(ϕ).

The figure below shows the relationship between the vectors and the angle.
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Source: Wikipedia

Much like scalar multiplication, a dot produce is distributive:

a⃗ · (⃗b+ c⃗) = a⃗ · b⃗+ a⃗ · c⃗

Here’s the proof:

a⃗ · (⃗b+ c⃗) = ax(bx + cx) + ay(by + cy) + az(bz + cz)

= axbx + axcx + ayby + aycy + azbz + azcz

= a⃗ · b⃗+ a⃗ · c⃗
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Cross (Vector) Product The cross product of two vectors is a vector quantity. The cross
product of two 3D vectors, a⃗ and b⃗, is given by:

a⃗× b⃗ =

∣∣∣∣∣∣
x̂ ŷ ẑ
ax ay az
bx by bz

∣∣∣∣∣∣
This results in a vector that has the following components:

a⃗× b⃗ = (aybz − azby)x̂− (axbz − azbx)ŷ + (axby − aybx)ẑ

A few notes about cross products:

1. a⃗× b⃗ always produces a vector and never a scalar.
2. (⃗a× b⃗)i denotes the i-th component of the cross product.
3. a⃗× b⃗ ̸= b⃗× a⃗; order matters.

What is the relationship between a⃗× b⃗ and a⃗ · b⃗? The right-hand rule gives the direction of the cross
product. The magnitude of the cross product is given by:

|⃗a× b⃗| = |⃗a||⃗b| sin(ϕ)

|⃗b× a⃗| = |⃗a||⃗b| sin(ϕ)

And thus both magnitudes are the same, however, the directions are opposite.

a⃗× b⃗ = −b⃗× a⃗

1.4 Units

In classical mechanics, we will use the International System of Units (SI). The SI units are the
standard units used in science and engineering. The primary units we will use in this course are
related to the motion of objects:

• Length: The meter, m, is the standard unit of length, [r] = length.
• Mass: The kilogram, kg, is the standard unit of mass, [m] = mass.
• Time: The second, s, is the standard unit of time, [t] = time.

From these basic units, we can derive the other units. We also use velocity, acceleration, force,
momentum, and energy.

• Velocity: The meter per second, m/s, is the standard unit of velocity, [v] = length/time.
• Acceleration: The meter per second squared, m/s2, is the standard unit of acceleration,
[a] = length/time2.

• Force: The Newton, N , is the standard unit of force, [F ] = mass ∗ length/(time)2.
• Momentum: The kilogram meter per second, kg ·m/s, is the standard unit of momentum,
[p] = mass ∗ length/time.

• Energy: The Joule, J , is the standard unit of energy, [E] = mass ∗ length2/time2.
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1.4.1 Example: What are the units of the drag coefficients?

Recall the drag force, Fair = bv + cv2. The units of the drag coefficients, b and c, can be found by
examining the units of the force. The units of the force are:

[Fair] = [b][v] + [c][v2]

mass ∗ length/(time)2 = [b] ∗ length/time + [c] ∗ (length/(time))2

The units need to match on both sides of the equation. Thus, the units of the drag coefficients are:

Thus, the units of the drag coefficients are:

[b] = mass ∗ length/(time)2 ∗ time/length = mass/time

[c] = mass ∗ length/(time)2 ∗ (time/(length))2 = mass/length
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