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1 Week 6 - Notes: Linear and Angular Momentum

We’ve talked about the central conservation laws of classical mechanics:

• Conservation of energy - in a process, if energy is conserved, the total energy of the system is
the same before and after the process. More strongly, in a closed system, the total energy is
constant for any process (dEsys/dt = 0).

• Conservation of linear momentum - in a process, if momentum is conserved, the total momen-
tum of the system is the same before and after the process. More strongly, in a closed system,
the total vector momentum is constant for any process (dp⃗sys/dt = 0).

• Conservation of angular momentum - in a process, if angular momentum is conserved, the total
angular momentum of the system is the same before and after the process. More strongly, in a
closed system, the total vector angular momentum is constant for any process (dL⃗sys/dt = 0).

We’ve worked with the conservation of energy a lot because it’s a fundamental concept in physics
and it lends itself to a scalar equation analysis. This can be quite a bit simpler in many cases, but
an energy only view of the world can be limiting.

1.1 Linear Momentum

As we move into the formal study of linear momentum, we will start with a reminder of the definition
of momentum, and the mathematical form of the conservation of momentum.

Linear momentum is a vector quantity defined as the product of an object’s mass and its velocity.
It is denoted by the symbol p⃗ and is defined as:

p⃗ = mv⃗

where m is the mass of the object and v⃗ is the velocity of the object. The SI unit of momentum is
kg m/s. As we later came to understand with Einstein’s special theory of relativity, this definition
of momentum is the classical limit of the relativistic momentum:

p⃗ = γmv⃗

where γ is the Lorentz factor,

γ =
1√

1− v2

c2

.
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As you can calculate, the relativistic momentum reduces to the classical momentum when the
velocity is much less than the speed of light. As v/c → 0, γ → 1, and the relativistic momentum
reduces to the classical momentum.

1.1.1 Linear Momentum and Newton’s Second Law

You have seen in our discussion of Newton’s Second Law that the net force on a system is equal to
the mass of the system times the acceleration of the system. This can be written as:

F⃗net = ma⃗.

However, this definition and our thinking here with it is a bit limited. What about systems of
objects that are interacting with each other? What about deformable systems? What happens if
something is shedding mass, like a rocket or jet?

Newton’s definition from the Principia is a bit more general. He defines the force in terms of the
rate of change of the body’s momentum:

F⃗net =
dp⃗

dt
.

We can extend that definition to a system of objects, where the net force on the system is equal to
the rate of change of the total momentum of the system:

F⃗net =
dp⃗sys
dt

.

The second step might not be obvious, but by working through a few examples we can see how this
is a more useful and general definition of force.

1.1.2 Forces internal to a system zero out

Consider an abstract system of N particles. You might think of them as point particles but they
could be extended objects. They experience outside forces and internal forces; i.e., we go a tag all
the particles in our system and we can tell which ones are interacting with each other. We can also
tell which ones are interacting with the outside world. This is a bit silly, but it can help us visualize
what we are arguing below.

The total force on the system is given by the sum of all the masses times the acceleration of each
particle:

F⃗total =

N∑
i=1

mia⃗i =

N∑
i=1

F⃗i

where the last term is the net force on the ith particle. For a given object, i, the net force is the
sum of all the forces acting on it, both internal and external,

F⃗i = F⃗ int
i + F⃗ ext

i .

2

https://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica


Here these internal forces are pairwise interactions between the particle i and every other particle
in the system,

F⃗ int
i =

N∑
j ̸=i

F⃗ij ,

where the sum is over all particles that are not i because there’s no force between a particle and
itself.

Cool, what happens to the internal force equation when we sum over all particles in the system?

Concrete Examples We have a generic setup, let’s see what happens when we apply this to a
few examples: 2 particles, 3 particles, and then N particles.

Two Particles With two particles the sum is easy to write out fully.

F⃗int =

2∑
i=1

F⃗ int
i

F⃗int =
2∑

i=1

2∑
j ̸=i

F⃗ij

F⃗int = F⃗12 + F⃗21 = 0

By Newton’s Third Law, the force of particle 1 on particle 2 is equal and opposite to the force of
particle 2 on particle 1. The internal forces cancel out and the net force on the system is the sum
of the external forces.

F⃗12 = −F⃗21

So here the internal forces sum to zero.

F⃗int = 0

Three Particles We can write this out in a similar way.

F⃗int =

3∑
i=1

F⃗ int
i

F⃗int =

3∑
i=1

3∑
j ̸=i

F⃗ij

F⃗int = F⃗12 + F⃗13 + F⃗23 + F⃗21 + F⃗31 + F⃗32
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We can group these terms by Newton’s Third Law pairs.

F⃗int = (F⃗12 + F⃗21) + (F⃗13 + F⃗31) + (F⃗23 + F⃗32) = 0

Every interaction on body i has a corresponding equal and opposite interaction on body j, and the
internal forces are again zero.

F⃗int = 0

N Particles Clearly, there seems to be a pattern here. Namely that the internal forces are always
zero. We can write out the sum for N particles in a way that suggests this is always true.

F⃗int =

N∑
i=1

F⃗ int
i

F⃗int =
N∑
i=1

N∑
j ̸=i

F⃗ij

And where we make a switch in the sum terms, so we can counting the force from each interaction
in each term in the sum to make it clear why the internal forces sum to zero.

F⃗int =
N∑
i=1

N∑
j>i

F⃗ij + F⃗ji︸ ︷︷ ︸
always 0

 = 0

Internal forces will always appear as third law pairs, so the internal interactions will always sum to
zero. This is a very powerful result.

F⃗int = 0 , always

For a given system, only external forces can change the momentum.

1.1.3 Mathematical Form of Conservation of Linear Momentum

Let’s look back at the system momentum,

p⃗sys =

N∑
i=1

miv⃗i =

N∑
i=1

p⃗i.

If we take the time derivative of the system momentum, and assume we have point particles, so the
masses are not changing,

dp⃗sys
dt

=

N∑
i=1

mi
dv⃗i
dt

=

N∑
i=1

mia⃗i =

N∑
i=1

F⃗i
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The net force on the system is given by,

F⃗net = F⃗int + F⃗ext.

Should there be no external forces, then,

F⃗net = F⃗int = 0.

And thus there is no change momentum of the system,

dp⃗sys
dt

= 0.

So if the system has no external forces, the total momentum of the system is conserved. We can
propose a discrete extension to this form above where

dp⃗sys
dt

≈ ∆p⃗sys
∆t

= 0.

And thus, it’s easy to see:

∆p⃗sys = p⃗sys,f − p⃗sys,i = 0.

If there are external forces, then we also have a prediction equation for how the energy will change
in a small time step ∆t:

∆p⃗sys = p⃗sys,f − p⃗sys,i =
N∑
i=1

F⃗ext,i∆t,

so that,

p⃗sys,f = p⃗sys,i + F⃗ext∆t.

1.2 Angular Momentum

Angular momentum is a complex and rich quantity that has deep connections to the shape and
structure of a system. The “configuration” or how it is distributed in space can have a big impact
on the dynamics of a system. Our study of classical angular momentum will be a stepping stone to
our study of quantum angular momentum and the spin of particles.

:::{admonition} Quantum Mechanical Spin :class: information Spin is a quantum mechanical prop-
erty that is not related to the rotation of a particle, but it is a form of angular momentum, and
it’s essential to the structure of the universe - it tells us if we have fermionic or bosonic particles,
it is what gives us the Pauli Exclusion Principle, and it is what gives us the Zeeman Effect and the
Stark Effect. :::
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For the moment, we will limit ourselves to classical angular momentum and we will focus on the ab-
stract case of a single particle. As we work through the semester, we will revisit angular momentum
and introduce how to work with distributions of mass and extended objects.

1.2.1 Definition of Angular Momentum

For a particle with a momentum p⃗, the angular momentum is defined as the cross product of the
position vector r⃗ and the momentum vector p⃗,

L⃗ = r⃗ × p⃗ = m (r⃗ × v⃗) .

This is a quantity that depends on the location of the particle relative origin of coordinates. This
means you have some latitude in choosing the origin of coordinates, and you can choose the origin
to simplify the problem.

This also means the angular momentum is a vector quantity, and it points in the direction perpen-
dicular to the plane defined by the position and momentum vectors.

1.2.2 When is Angular Momentum Conserved?

We can ask this by computing the time derivative of the angular momentum,

dL⃗

dt
=

d

dt
(r⃗ × p⃗) = 0?

We did a calculation like this on a homework where we computed

d

dt

(
a⃗× b⃗

)
= a⃗× d⃗b

dt
+

da⃗

dt
× b⃗.

Let’s apply it here:

dL⃗

dt
=

d

dt
(r⃗ × p⃗) =

dr⃗

dt
× p⃗+ r⃗ × dp⃗

dt
.

If we assume that ṁ = 0, then we can write the time derivative of the momentum as,

dp⃗

dt
=

d

dt
(mv⃗) = m

dv⃗

dt

We group the terms in the time derivative of the angular momentum,

dL⃗

dt
= m

dr⃗

dt
× v⃗︸ ︷︷ ︸

=0

+mr⃗ × dv⃗

dt
.

The first term the cross product of the velocity with itself v⃗ × v⃗, and is zero, and the second term
is the cross product of the position vector with the acceleration,
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dL⃗

dt
= mr⃗ × dv⃗

dt
= r⃗ ×ma⃗.

So the time derivative of the angular momentum is the net torque on the system!

τ⃗net = r⃗ × F⃗net.

dL⃗

dt
= r⃗ ×ma⃗ = r⃗ × F⃗net

dL⃗

dt
= τ⃗net.

If the net torque on the system is zero, then the angular momentum is conserved, and it is a constant
of the motion.

dL⃗sys

dt
= 0.

∆L⃗sys = L⃗sys,f − L⃗sys,i = 0.

If there’s a net torque, we have a discrete update equation for the angular momentum,

L⃗sys,f = L⃗sys,i + τ⃗net∆t.

1.2.3 Are we sure there are no internal torques that matter?

We can ask the same question we asked about internal forces. Are there internal torques that
matter? As before, let us define the total force on particle i as the sum of internal and external
forces,

F⃗i = F⃗ int
i + F⃗ ext

i .

We assume there are no external forces, and so the net force on the system is the sum of the internal
forces,

F⃗net = F⃗int.

For given object, we observe an angular momentum l⃗i that is the cross product of the position
vector and the momentum vector. So the time derivative of the ith particle’s angular momentum
is,

d⃗li
dt

= r⃗i × F⃗i.
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If the total angular momentum of the system is the sum of the angular momenta of the particles,

L⃗ =

N∑
i=1

l⃗i,

then the time derivative of the total angular momentum is,

dL⃗

dt
=

N∑
i=1

d⃗li
dt

=
N∑
i=1

r⃗i × F⃗i.

Recall that F⃗i =
∑N

j ̸=i F⃗ij . So we can rewrite the time derivative of the total angular momentum
as,

dL⃗

dt
=

N∑
i=1

N∑
j ̸=i

r⃗i × F⃗ij =
N∑
i=1

N∑
j>i

(
r⃗i × F⃗ij + r⃗j × F⃗ji

)

But note that r⃗i × F⃗ij = −r⃗j × F⃗ji, so the resulting expression gives us,

dL⃗

dt
=

N∑
i=1

N∑
j>i

(r⃗i − r⃗j)× F⃗ij .

So if the internal forces are parallel to the separation between the particles, then the internal
torques sum to zero, and the total angular momentum of the system is conserved. So things like the
gravitational force, the electric force, and spring forces are all internal forces that do not contribute
to the net torque on the system.

And thus,

dL⃗sys

dt
= 0.
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