
08_notes

July 9, 2025

1 Week 8 - Notes: Oscillators and Modeling Oscillations

We continue our study of physics phenomena that exhibits recurrent or periodic behavior. Some
systems repeat their motion in a regular pattern, and we call them oscillators.

We have met this behavior many times. This is because we often look at the behavior of stems just
a little bit away from equilibrium. Systems with local stable equilibria will have oscillatory behavior
in a region around that equilibrium point. Note below the made up example of a potential energy
function that has local minima and maxima.

Near the local minima, the system will oscillate back and forth. The potential energy function will
look like a parabola.

[18]: ## Make a plot of a potential energy function with 3 local minima

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-v0_8-colorblind')

x = np.linspace(-2, 2, 100)
U = x**6 - 2*x**3 - 10*x**2 + x

plt.plot(x, U)
plt.xlabel('x')
plt.ylabel('Potential Energy')
plt.title('Potential Energy Function')
plt.grid(True)
plt.tight_layout()
plt.show()

1

1.1 Why do we often see oscillations in physics?

Oscillatory behavior is common in physics because many systems have a stable equilibrium point.
When we disturb the system from equilibrium, it will oscillate back and forth around that equi-
librium point. Let’s assume there’s a given stable equilibrium point at x = a, we can write the
potential energy function as a Taylor series expansion around that point:

U(x) ≈ U(a) +
dU

dx

∣∣∣∣
x=a

(x− a) +
1

2

d2U

dx2

∣∣∣∣
x=a

(x− a)2 + · · ·

The linear term is zero because the equilibrium point is a minimum,
dU

dx

∣∣∣∣
x=a

= 0. The quadratic

term is remains as does the constant term. So up to the quadratic term, the potential energy
function is a parabola.

U(x) ≈ U(a) +
1

2

d2U

dx2

∣∣∣∣
x=a

(x− a)2

We can write the value of the second derivative as a constant k. It will just be the measure of the
concavity of the potential energy function at the equilibrium point. So near x = a, the potential
energy function will look like a parabola of the form:

2

U(x) ≈ U(a) +
1

2
k(x− a)2

Because only changes in potential energy are important, we can ignore the constant term U(a). The
change in potential energy is then:

∆U =
1

2
k(xf − a)2 − 1

2
k(xi − a)2

∆U = Uf − Ui

This is just the change in potential energy for any spring-mass system (any SHO) if k > 0.

1.2 The Exact Solution for the Simple Harmonic Oscillator

This potential U = 1
2kx

2 is the potential for the simple harmonic oscillator when k > 0 and we are
modeling around a stable critical point. We know that this potential energy will produce a restoring
force.

F = −dU

dx
= −kx

Thus our equation of motion is:

mẍ = −kx,

Or

ẍ = − k

m
x.

The natural oscillation frequency of the SHO is:

ω =

√
k

m
.

And thus we obtain several forms of their general solution:

x(t) = A cos(ωt) +B sin(ωt)

x(t) = C cos(ωt+ ϕ)

x(t) = D sin(ωt+ ϕ)

Where A, B, C, D, and ϕ are constants that depend on the initial conditions of the system. The
phase ϕ is the phase angle of the oscillation. Each solution is equivalent to the others and can be
written as the other form. And each solution has two arbitrary constants that depend on the initial
conditions of the system.

3

1.2.1 Complex forms of the SHO solution

These forms are useful, but often lead to more complex algebra. We can write the solution in terms
of complex exponentials, which have the advantage of simplifying the algebra. Let’s try a complex
form of the solution:

x(t) = eiωt where i2 = −1

Take its derivatives:

ẋ(t) = iωeiωt

ẍ(t) = (iω)(iω)eiωt = −ω2eiωt = −ω2x(t)

Note that e−iωt is also a solution to the differential equation that will produce this same result. So
the general solution is the linear combination of these two solutions:

x(t) = C1e
iωt + C2e

−iωt

where C1 and C2 are constants that depend on the initial conditions of the system and can be
complex. We still have two arbitrary constants that depend on the initial conditions of the system,
which is needed for a second-order differential equation.

1.2.2 But the solution to the motion of the SHO is real!

Yes, that is true. The solution must be a real function of time. This puts conditions on the constants
C1 and C2. Using the Euler formula:

eiθ = cos(θ) + i sin(θ)

we can apply this to the functional form of the solution, such that,

e±iωt = cos(ωt)± i sin(ωt).

Applying this to the general solution:

x(t) = C1(cos(ωt) + i sin(ωt)) + C2(cos(ωt)− i sin(ωt))

x(t) = (C1 + C2) cos(ωt) + i(C1 − C2) sin(ωt).

We grouped the terms in the last line to define some constants B1 and B2:

B1 = C1 + C2

B2 = i(C1 − C2)

So that,

4

x(t) = B1 cos(ωt) +B2 sin(ωt).

But B1 and B2 must be real because the rest of the solution is real. What does that mean? Let’s
write C1 and C2 in terms of B1 and B2:

C1 =
1

2
(B1 − iB2)

C2 =
1

2
(B1 + iB2)

1.3 Complex Conjugates

These values of C1 and C2 are the complex conjugates of each other. The complex conjugate of a
complex number z = a+ ib is z∗ = a− ib. The complex conjugate of a complex number is the same
as the original number, but with the sign of the imaginary part reversed.

We can draw these in the complex plane where the x-axis is the real part and the y-axis is the
imaginary part.

In the graph we can see that the complex conjugates are a reflection of each other. This is because
the imaginary part of the complex conjugate is the negative of the original imaginary part.

The mathematics is quite useful for us. Consider the produce of two complex conjugates:

z = a+ ib

5

z∗ = a− ib

So that,

zz∗ = (a+ ib)(a− ib) = a2 + b2

The product of a complex number and its complex conjugate is always a real number. Moreover,
we can define the magnitude of a complex number as:

|z| =
√
zz∗ =

√
a2 + b2,m

which is also real! Given that C1 and C2 are complex conjugates (C2 = C∗
1), we can write the

general solution to the SHO as:

x(t) = C1e
iωt + C∗

1e
−iωt

1.3.1 What does that mean for the SHO?

There’s a few more mathematical properties for complex conjugates that are useful for the SHO.
The general solution to the SHO is. Let:

z = a+ ib

z∗ = a− ib

So that,

z + z∗ = 2a,

z − z∗ = 2ib.

We denote the Real Part of a complex number as Re(z) and the Imaginary Part as Im(z). So that,

Re(z) = Re(z∗) = a,

Im(z) = −Im(z∗) = b.

The real and imaginary parts of a complex number are real numbers. We can apply these properties
to the general solution of the SHO:

x(t) = C1e
iωt + C∗

1e
−iωt

x(t) = C1e
iωt +

(
C1e

iωt
)∗

x(t) = 2Re
(
C1e

iωt
)

let C = 2C1 so that,

6

x(t) = Re
(
Ceiωt

)
.

This must be equal to a real function of time. For example,

x(t) = A cos(ωt− δ),

which we can write as,

x(t) = Re
(
Aei(ωt−δ)

)
= Re

(
Ae−iδeiωt

)
.

Thus,

C = Ae−iδ.

This is a bit abstract, but let’s try to graph this and make it a bit concrete. Below, we’ve plotted
the solution to an oscillator that starts with a δ = π/4 phase shift. The solution is plotted in the
complex plane with rainbow colors to demonstrate time (from violet to red). The starting point is
marked with a black square, and because the omega is positive, the solution moves counter-clockwise
in the plane.

Below that we trace the real part of the solution in the t-x plane. This is not the same as a readout
on something like an oscilloscope, or a time trace of the solution. But we can rotate the graph to
be in the x-t plane - and thus a real temporal solution. In all cases, the black square marks the
starting point of the solution, and the rainbow of points marks the solution as it moves in time.

[33]: import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

plt.style.use('seaborn-v0_8-colorblind')

C1 = 1
delta = np.pi/4
omega = 1
t = np.linspace(0, 2*np.pi, 100)

x = C1*np.exp(1j*(omega*t - delta))

Plot the trajectory in the complex plane

fig, ax = plt.subplots(1,1, figsize=(6, 6))
plt.scatter(x.real, x.imag, c=t, cmap=cm.rainbow, s=15)
plt.plot(x.real[0], x.imag[0], 'ks', markersize=15, label='Start')
plt.axhline(0, color='k', lw=2)
plt.axvline(0, color='k', lw=2)
plt.grid()

7

plt.xlabel('Real Part')
plt.ylabel('Imaginary Part')
plt.tight_layout()

Plot the trajectory in the t-x plane
fig, ax = plt.subplots(1,1, figsize=(6, 6))
plt.scatter(x.real, t, c=t, cmap=cm.rainbow, s=15, label='Real Part')
plt.plot(x.real[0], t[0], 'ks', markersize=15, label='Start')
plt.axvline(0, color='k', lw=2)
plt.grid()
plt.xlabel('x')
plt.ylabel('t', rotation=0)
plt.tight_layout()

Plot the trajectory in the x-t plane
fig, ax = plt.subplots(1,1, figsize=(6, 6))
plt.scatter(t, x.real, c=t, cmap=cm.rainbow, s=15, label='Real Part')
plt.plot(t[0], x.real[0], 'ks', markersize=15, label='Start')
plt.axhline(0, color='k', lw=2)
plt.grid()
plt.xlabel('t')
plt.ylabel('x', rotation=0)
plt.tight_layout()

8

9

10

1.4 Damped Oscillations

The firs complication we can add to an oscillator is a bit of damping, or friction. It’s common to
see this in real systems. Here, we add a force that removes energy from the system. This is often
modeled as a force that is proportional to the velocity of the system:

Fdamping = −bẋ

where b is a constant that depends on the system. The equation of motion is then:

mẍ = −kx− bẋ

or, rearranging terms,

11

mẍ+ bẋ+ kx = 0

1.4.1 Common simplifications

We often rewrite the equation in terms of ẍ:

ẍ+
b

m
ẋ+

k

m
x = 0

And then we define a few constants:

ω0 =

√
k

m
(natural frequency)

2β =
b

m
(damping constant)

Thus we obtain:

ẍ+ 2βẋ+ ω2
0x = 0

This is a second order, linear ODE, so if we find a solution, and it first our initial conditions, we
can be sure it is the solution to the problem.

:::{admonition} Uniqueness of the solution :class: tip

Linear ODEs have a very nice property: if you find a solution to the ODE, and it satisfies the initial
conditions, then it is the unique solution to the problem. This stems from the Picard-Lindelöf
theorem.

That is you are guaranteed that if you find a solution, you can be sure it is the only solution.

There’s a caveat to this, if you find multiple solutions and they are different, then your solution is
the linear combination of those solutions.

We will exploit this property frequently. :::

1.4.2 Finding the solution

Let’s assume a solution of the form and see where that gets us:

x(t) = ert

So that the derivatives are:

ẋ(t) = rert ẍ(t) = r2ert

Substituting these into the ODE gives us:

12

https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem
https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem

r2ert + 2βrert + ω2
0e

rt = 0

We can factor out the ert term:

ert
(
r2 + 2βr + ω2

0

)
= 0

Except for the trivial case of ert = 0, we can divide both sides by ert:

r2 + 2βr + ω2
0 = 0

This is the so called Auxilary Equation. This is a quadratic equation in r and we can solve it using
the quadratic formula:

r =
−2β ±

√
(2β)2 − 4ω2

0

2

So that we obtain two roots:

r1 = −β +
√
β2 − ω2

0

r2 = −β −
√
β2 − ω2

0

As uniqueness guides us, we can write the general solution as a linear combination of the two
solutions:

x(t) = Aer1t +Ber2t

Where A and B are constants that depend on the initial conditions of the system.

In full detail that solution is:

x(t) = e−βt
(
Ae

√
β2−ω2

0t +Be−
√

β2−ω2
0t
)
.

1.5 Case Studies of Damped Oscillations

Let’s look a the three cases of damping. We can classify the system based on the value of β and ω0.

1.5.1 No Damping β = 0

This is just the case of the SHO. The solution is:

x(t) = e−βt
(
Ae

√
β2−ω2

0t +Be−
√

β2−ω2
0t
)
.

x(t) = e0
(
Ae

√
−ω2t +Be

√
−ω2t

)
13

https://en.wikipedia.org/wiki/Auxiliary_equation

x(t) = C1e
iωt + C2e

−iωt

This is the same solution we had before. The system oscillates with a frequency ω0 and the amplitude
is constant.

1.5.2 Weak Damping β2 < ω2
0

Technically, weak means β2 ≪ ω2
0, but whatever. Let’s just work this out:

β2 − ω2
0 < 0

So that

√
β2 − ω2

0 = i
√

ω2
0 − β2 = iω1.

We introduce a new frequency ω1 =
√
ω2
0 − β2, which is different from the natural frequency ω0.

The solution is:

x(t) = e−βt
(
C1e

√
β2−ω2

0t + C2e
−
√

β2−ω2
0t
)

So that with a change to ω1 we have:

x(t) = e−βt
(
C1e

iω1t + C2e
−iω1t

)
Or an equivalent form:

x(t) = Ae−βt cos(ω1t+ δ)

This is an oscillator with a decay envelope that is decaying according to the factor e−βt. We can
graph it.

This is what we call an underdamped oscillator. The system oscillates with a frequency ω1 and the
amplitude decays exponentially with time.

[16]: import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-v0_8-colorblind')

A = 1
beta = 0.5
omega = 10
omega1 = np.sqrt(omega**2 - beta**2)
t = np.linspace(0, 2*np.pi, 1000)
x = A*np.exp(-beta*t)*np.cos(omega1*t)
upper_envelope = A*np.exp(-beta*t)

14

lower_envelope = -A*np.exp(-beta*t)

plt.plot(t, x, 'C0', label='Underdamped Oscillation')
plt.plot(t, upper_envelope, 'C1--', label='Upper Envelope')
plt.plot(t, lower_envelope, 'C1--', label='Lower Envelope')
plt.axhline(0, color='k', lw=2)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Damped Oscillation with Decay Envelope shown')
#plt.legend()
plt.grid()
plt.tight_layout()
plt.show()

1.5.3 Strong Damping β2 > ω2
0

Again, the assumption is really β2 ≫ ω2
0, but let’s just work this out. In the case of strong damping,

we have:

β2 − ω2
0 > 0

15

So that
√

β2 − ω2
0 is a real number. We can write the solution as:

x(t) = C1e
(−β−

√
β2−ω2

0)t + C2e
(−β+

√
β2−ω2

0)t

Let’s consider t → ∞. Both terms will decay to zero. This is overdamped motion. And typically
there’s a transient motion that quickly decays to zero. The system does not oscillate, but rather
returns to equilibrium without oscillating. Let’s graph it.

[19]: import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-v0_8-colorblind')

C1 = 1
C2 = -1
omega = 10
beta = 100

t = np.linspace(0, 2*np.pi, 1000)

x = C1*np.exp(-1*(beta-np.sqrt(beta**2 - omega**2))*t) + C2*np.exp(-1*(beta+np.
↪→sqrt(beta**2 - omega**2))*t)

plt.plot(t, x, 'C0', label='Overdamped Oscillation')
plt.grid()
plt.axhline(0, color='k', lw=2)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Overdamped Oscillation')

plt.tight_layout()
plt.show()

16

1.5.4 Critical Damping β2 = ω2
0

This is the case where we naively would find:

√
β2 − ω2

0 = 0

so that,

x(t) ∝ e−βt

So the solution just decays to zero??

No! Our guess of x(t) = ert is only a good guess unless β = ω0. In this case, we have a double root.
We need to find a new solution. We can do this by multiplying our guess by t:

x(t) = te−βt

So the general solution is for critical damping is:

x(t) = e−βt (C1 + C2t)

17

And we plot that below.

[23]: import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-v0_8-colorblind')

C1 = 1
C2 = -1
omega = 1
beta = 1

t = np.linspace(0, 2*np.pi, 1000)
x = np.exp(-beta*t)*(C1 + C2*t)

plt.plot(t, x, 'C0', label='Critically Damped Oscillation')
plt.axhline(0, color='k', lw=2)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Critically Damped Oscillation')
plt.grid()
plt.tight_layout()
plt.show()

18

19

