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1 Week 13 - Notes: Examples of Lagrangian Mechanics

We’ve seen the Lagrangian formulation of mechanics, and we have seen how to use it to derive the
equations of motion for a system. We will cover a few common examples of Lagrangian mechanics
and point out some of the subtleties that arise in each case.

1.1 Example: The Atwood Machine

The Atwood machine consists of two masses, M and m, connected by a massless string that passes
over a massless pulley. The system is subject to gravity alone. The figure below shows the system
along with a choice of coordinates y1 and y2 for the two masses.

These coordinates are measured from the center of the pulley and positive y1 and y2 are taken to be
upward. Let’s try to use the Lagrangian formalism to find the equations of motion for this system.

V = +Mgy1 +mgy2

T =
1

2
Mẏ21 +

1

2
mẏ22
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1.1.1 Equation of Constraint

But notice that y1 and y2 are no independent coordinates. If we unravel the string that is over the
pulley, we find that (assume length of string is l):

y1 + πR+ y2 = l

where R is the radius of the pulley. That is shown in the figure below.

The equation above is called an equation of constraint. It relates the coordinates y1 and y2 to
each other. We can use this equation to eliminate one of the coordinates. Let’s eliminate y2:

l = y1 + πR+ y2 → y1 = (l − πR)− y2

This constraint has implications for velocities,

dy1
dt

=
d

dt
((l − πR)− y2) = −dy2

dt

ẏ1 = −ẏ2.

This is likely what we could have expected, that the two masses move in opposite directions at the
same speed.

1.1.2 Constructing the Lagrangian

Let’s use this constraint to reduce the number of coordinates in the Lagrangian.

L(y1, y2, ẏ1, ẏ2) → L(y1, ẏ1)

We can do this by substituting y2 in terms of y1 into the energy equations:

T (y1, ẏ1) =
1

2
Mẏ21 +

1

2
mẏ22 =

1

2
(M +m)ẏ21 = T (ẏ1)

V (y1, y2) = +Mgy1 +mgy2

V (y1, y2) = Mgy1 +mg((l − πR)− y1)
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V (y1, y2) = (M −m)gy1 +mg(l − πR)

V (y1, y2) = (M −m)gy1 + U0

where U0 = mg(l − πR) is a constant and will not affect the equations of motion.

L(y1, ẏ1) = T (ẏ1)− V (y1) =
1

2
(M +m)ẏ21 − (M −m)gy1

∂L
∂y1

= −(M −m)g

∂L
∂ẏ1

= (M +m)ẏ1

These derivatives give the following equation of motion:

−(M −m)g − d

dt
((M +m)ẏ1) = 0

Generalized Force Notice that the first term in the above equation is the force on the mass M
in the Newtonian picture: the weight of M minus the weight of m. That makes sense because the
Lagrangian formalism is supposed to reproduce Newton’s laws, and the spatial derivative of the
Lagrangian produces a generalized force.

∂L
∂qi

= −∂V

∂qi
= Fi

The kinetic term has no spatial dependence, so it does not contribute to the generalized force.

Generalized Momentum The second term in the above equation is the time derivative of the
momentum of the system using y1 as the coordinate:

(M +m)ẏ1 = Mẏ1 −mẏ2 = py1

Again, that is a sensible result because the Lagrangian formalism is supposed to reproduce Newton’s
laws, and the generalized force is related to the time derivative of the generalized momentum.

d

dt

(
∂L
∂q̇i

)
=

d

dt

(
∂T

∂q̇i

)
=

dpqi
dt
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1.1.3 Equation of Motion

The equation of motion can be written as

(M = m)ÿ1 = −(M −m)g

ÿ1 = −(M −m)

(M +m)
g.

With M > m, this acceleration is downward as the larger mass M accelerates down. With ẏ1 = −ẏ2,
we know

ÿ2 = −ÿ1

, so that:

ÿ2 =
(M −m)

(M +m)
g

Again, with M > m, this acceleration is upward as the smaller mass m accelerates up.

1.2 Example: Atwood Machine with Rotating Pulley

In the previous example, we didn’t take into account the energy needed to rotate the pulley. Let’s
do that now. Beucase the rope cannot slip, any small rotation Rdϕ of the pulley give a change dy1
in the position of mass M . This is the no slip constraint.

If the pulley has a mass Mp and radius R, then we must introduce it’s kinetic energy:

Tpulley =
1

2
Iω2

where I is the moment of inertia of the pulley and ω is the angular velocity of the pulley, ω = ϕ̇.
This angular velocity is related to the linear velocities of the masses.

I =
1

2
MpR

2

Tpulley =
1

2

(
1

2
MpR

2

)
ϕ̇2

Tpulley =
1

4
MpR

2ϕ̇2

We now map this additional kinetic energy into the problem.

T (ẏ1, ϕ̇) =
1

2
(M +m)ẏ21 +

1

4
MpR

2ϕ̇2

But the constraint is such that,
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ẏ1 = Rdϕ → y1 = Rϕ+ Rϕ0︸︷︷︸
const.

ẏ1 = Rϕ̇

We work these back into T , V , and L.

T (ϕ̇) =
1

2
(M +m)ẏ21 +

1

4
MpR

2ϕ̇2

T (ϕ̇) =
1

2
(M +m+

1

2
Mp)R

2ϕ̇2

V (ϕ) = (M −m)gy1 + U0

V (ϕ) = (M −m)g(Rϕ+Rϕ0) + U0

V (ϕ) = (M −m)gRϕ+ Ũ0

where Ũ0 = (M −m)gRϕ0 + U0 is another constant that will not affect the equations of motion.

L(ϕ, ϕ̇) = T (ϕ̇)− V (ϕ)

L(ϕ, ϕ̇) = 1

2
(M +m+

1

2
Mp)R

2ϕ̇2 − (M −m)gRϕ

1.2.1 Torque and Angular Momentum

Our generalized coordinate is ϕ and our generalized velocity is ϕ̇. We apply the Euler-Lagrange
equation. We obtain the generalized force:

∂L
∂ϕ

= −(M −m)gR = Fϕ

Notice that in this case, the generalized force is not the same as the force on mass M in the
Newtonian picture. It’s a torque around the pulley.

We can find the generalized momentum in a similar way:

∂L
∂ϕ̇

= (M +m+
1

2
Mp)R

2ϕ̇ = pϕ

This is the angular momentum of the system about the axle. We can see that by breaking down
each part and adding them up.

L⃗total = L⃗disk + L⃗M + L⃗m

L⃗disk = Idiskω =
1

2
MpR

2ϕ̇ (out of the page)
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L⃗M = Mr⃗M × v⃗M = M(Rr̂)× (Rϕ̇ϕ̂) = MR2ϕ̇ (out of the page)

L⃗m = Mr⃗m × v⃗m = m(Rr̂)× (Rϕ̇ϕ̂) = mR2ϕ̇ (out of the page)

Add them up:

L⃗total =

(
1

2
Mp +M +m

)
R2ϕ̇ (out of the page)

Or the magnitude:

Ltotal =

(
1

2
Mp +M +m

)
R2ϕ̇

pϕ = Ltotal

1.2.2 Equation of Motion

We return to the diffeferential equation of motion:

−(M −m)gR− d

dt
((M +m+

1

2
Mp)R

2ϕ̇ = 0

−(M −m)gR− (M +m+
1

2
Mp)R

2ϕ̈ = 0

which produces the following equation of motion:

ϕ̈ = − g

R

(M −m)

(M +m+ 1
2Mp)

which is a constant acceleration.

1.3 Example: Bead in a Parabolic Bowl

A bead of mass m is constrained to move along a parabolic bowl. There is a gravitational force
acting on the bead. The bowl is symmetric about the z-axis and the bead is constrained to move
along the surface without friction or rolling. The bowl is described by the equation:

z =
1

2
c(x2 + y2)

where c is a constant that describes the curvature of the bowl. The figure below shows the system.
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In this case the system is better solved in cylindrical coordinates. The coordinates are (r, ϕ, z),
where r is the distance from the z-axis, ϕ is the angle around the z-axis, and z is the height above
the xy-plane as shown above.

With ⟨ρ, ϕ, z⟩ as the coordinates, equation for the constraint is:

z =
1

2
c(x2 + y2) =

1

2
cρ2.

Note that c has units.

[z] = m [ρ2] = m2 [c] =
1

m

The speed in cylindrical coordinates can be derived from the expressions in Cartesian coordinates,
but we quote the result here:
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v2 = ρ̇2 + ρ2ϕ̇2 + ż2.

1.3.1 Constructing the Lagrangian

We write the kinetic and potential energy of the bead in terms of the coordinates (r, ϕ, z).

T =
1

2
m

(
ρ̇2 + ρ2ϕ̇2 + ż2

)

V = mgz

In principle, the Lagrangian can depend on all three coordinates and all three velocities.

L(ρ, ρ̇, ϕ, ϕ̇, z, ż, t) = T − V

There is no explicit time dependence, so we can ignore t. When the Lagrangian has no explicit time
dependence, we should expect the energy to be conserved. This form of Lagrangian analysis does
not account for dissipation.

L(ρ, ρ̇, ϕ, ϕ̇, z, ż)

Moreover, with the symmetry of the problem, we can expect no ϕ dependence. That is the gravi-
tational potential energy only depends on z and not on ϕ. This is a consequence of the symmetry
of the problem and indicates that ϕ is a cyclic coordinate. We thus expect angular momentum to
be conserved about the z-axis.

L(ρ, ρ̇, ϕ̇, z, ż)

Lastly, the constraint equation gives us z in terms of ρ:

z =
1

2
cρ2

And thus we can find the time derivative of z:

ż = 2cρρ̇.

So the Lagrangian can be simplified three variables:

L(ρ, ρ̇, ϕ̇) = T − V

L(ρ, ρ̇, ϕ̇) = 1

2
m

(
ρ̇2 + ρ2ϕ̇2 + 4c2ρ2ρ̇2

)
−mg

1

2
cρ2
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1.3.2 Equations of Motion

We can now apply the Euler-Lagrange equations to find the equations of motion. We will do this for
each coordinate. Let’s start with ϕ because there is only one term in the Lagrangian that depends
on ϕ̇.

∂L
∂ϕ︸︷︷︸
0

− d

dt

(
∂L
∂ϕ̇

)
= 0

d

dt

(
∂L
∂ϕ̇

)
=

d

dt

(
mρ2ϕ̇

)
︸ ︷︷ ︸

Lz

= 0

This equation of motion indicates that the angular momentum about the z-axis is conserved, as we
expected from the symmetry of the problem.

For the coordinate ρ, we have:

∂L
∂ρ

− d

dt

(
∂L
∂ρ̇

)
= 0

∂L
∂ρ

= mρϕ̇2 + 4c2mρρ̇2 − 2mgcρ

∂L
∂ρ̇

= mρ̇+ 4mc2ρ2ρ̇

d

dt

(
∂L
∂ρ̇

)
= mρ̈+ 8mc2ρρ̇2 + 4mc2ρ2ρ̈

We can now write the equation of motion:

mρϕ̇2 + 4c2mρρ̇2 − 2mgcρ−mρ̈− 8mc2ρρ̇2 − 4mc2ρ2ρ̈ = 0

We can clean this up a little bit:

ρ̈(1 + 4c2ρ2) + 8c2ρρ̇2 = ρϕ̇2 + 4c2ρρ̇2 − 2gcρ

ρ̈(1 + 4c2ρ2) + 4c2ρρ̇2 − ρϕ̇2 + 2gcρ = 0

We try to write both equations in terms of their accelerations. We have:

ρ̈ = −4c2ρρ̇2 − ρϕ̇2 + 2gcρ

1 + 4c2ρ2
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ϕ̈ = −2ρρ̇ϕ̇

ρ2

For which we can develop a solution anywhere away from the origin (ρ ̸= 0).

1.3.3 Preparing for Numerical Solution

We need to write these equations in a form that is ready for numerical solution. We can do this by
writing the equations in terms of the first derivatives. Let ω = ϕ̇ and v = ρ̇. We get 4 1st order
equations:

ρ̇ = v

ϕ̇ = ω

v̇ = −4c2ρv2 − ρω2 + 2gcρ

1 + 4c2ρ2

ω̇ = −2vω

ρ2
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